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MKVSE: Multimodal Knowledge Enhanced Visual-semantic

Embedding for Image-text Retrieval

DUODUO FENG and XIANGTENG HE, Peking University, China

YUXIN PENG, Peking University, China and Peng Cheng Laboratory, China

Image-text retrieval aims to take the text (image) query to retrieve the semantically relevant images (texts),

which is fundamental and critical in the search system, online shopping, and social network. Existing works

have shown the effectiveness of visual-semantic embedding and unimodal knowledge exploiting (e.g., tex-

tual knowledge) in connecting the image and text. However, they neglect the implicit multimodal knowledge

relations between these two modalities when the image contains information that is not directly described

in the text, hindering the ability to connect the image and text with the implicit semantic relations. For in-

stance, an image shows a person next to the “tap” but the pairing text description may only include the

word “wash,” missing the washing tool “tap.” The implicit semantic relation between image object “tap” and

text word “wash” can help to connect the above image and text. To sufficiently utilize the implicit multi-

modal knowledge relations, we propose a Multimodal Knowledge enhanced Visual-Semantic Embedding

(MKVSE) approach building a multimodal knowledge graph to explicitly represent the implicit multimodal

knowledge relations and injecting it to visual-semantic embedding for image-text retrieval task. The con-

tributions in this article can be summarized as follows: (1) Multimodal Knowledge Graph (MKG) is pro-

posed to explicitly represent the implicit multimodal knowledge relations between the image and text as

intra-modal semantic relations and inter-modal co-occurrence relations. Intra-modal semantic relations pro-

vide synonymy information that is implicit in the unimodal data such as the text corpus. And inter-modal

co-occurrence relations characterize the co-occurrence correlations (such as temporal, causal, and logical)

that are implicit in image-text pairs. These two relations help establishing reliable image-text connections

in the higher-level semantic space. (2) Multimodal Graph Convolution Networks (MGCN) is proposed to

reason on the MKG in two steps to sufficiently utilize the implicit multimodal knowledge relations. In the

first step, MGCN focuses on the intra-modal relations to distinguish other entities in the semantic space.

In the second step, MGCN focuses on the inter-modal relations to connect multimodal entities based on

co-occurrence correlations. The two-step reasoning manner can sufficiently utilize the implicit semantic re-

lations between two modal entities to enhance the embeddings of the image and text. Extensive experiments

are conducted on two widely used datasets, namely, Flickr30k and MSCOCO, to demonstrate the superior-

ity of the proposed MKVSE approach in achieving state-of-the-art performances. The codes are available at

https://github.com/PKU-ICST-MIPL/MKVSE-TOMM2023.
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1 INTRODUCTION

The image and text are the two most prevalent modalities for understanding the real world. Cor-
respondingly, the demands for effective and efficient image-text retrieval technologies are signif-
icantly increasing, which is a fundamental and critical problem in multimodal retrieval and has
attracted extensive attention in recent years [7, 14, 36, 37, 46, 52]. Specifically, it aims to retrieve
the texts (images) that are most semantically relevant to the given image (text) query. However,
textual descriptions are abstract, while visual scenes are specific that contain redundant informa-
tion. They exhibit heterogeneous properties with inconsistent distributions and representations,
making it quite challenging to measure the semantic similarity between the image and text.

To tackle this challenge, Visual-Semantic Embedding (VSE) [7, 13, 14] was proposed to learn
a unified joint embedding space, where the similarities between the embeddings of paired image
and text entities are optimized to be maximum. A large proportion of methods utilize the deep
neural networks to extract the global representations of both images and texts and then learn to
measure the similarity by some criterion. Wang et al. [47] proposed a two-branch neural network
to extract the global embeddings of images and texts, respectively, and then fuse the two branches
via element-wise product for learning the similarity between these two data modalities. Faghri
et al. [14] proposed a loss function using hard negative mining to improve the quality of VSE mod-
els by learning with a maximized hinge-based triplet ranking loss. Wang et al. [48] proposed to
represent image and text with scene graphs: visual scene graph and textual scene graph, each of
which is exploited to jointly characterize objects and relationships in the corresponding modality.
Then the image-text retrieval task is naturally formulated as cross-modal scene graph matching.
However, this paradigm neglects any prior unimodal knowledge, which may hinder its capabilities
to reason the knowledge relations between image and text. To address this problem, some works
incorporate the commonsense knowledge by exploiting the word co-occurrences for reasoning
the high-level relations between image and text. Wang et al. [46] proposed a consensus-aware
visual-semantic embedding method to exploit the consensus information from the image caption-
ing corpus. It computes co-occurrences between the word concepts and learning the consensus-
aware-concept representations for image-text retrieval. Shi et al. [41] proposed a scene concept
graph to incorporate scene knowledge by utilizing the objects frequently appearing in the same
scene. Semantic concepts are detected from images and then expanded by the scene concept graph
to select relevant contextual concepts and fuse their representations with the image embedding
feature. However, these methods only utilize unimodal knowledge (e.g., textual knowledge) and
neglect the implicit multimodal knowledge relations between the image and text. When the image
contains information that is not directly described in the text, the implicit multimodal knowledge
relations can help to connect the image and text in the higher-level semantic space.

To tackle the aforementioned issues, we propose the Multimodal Knowledge enhanced Visual-
Semantic Embedding (MKVSE) approach. As illustrated in Figure 1, the multimodal knowledge
graph is built to explicitly represent the implicit multimodal relations. And then it can be used to
support the downstream image-text retrieval for connecting the image and text. When we see the
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Fig. 1. The illustration of the multimodal knowledge graph supporting image-text retrieval.

words “washing vegetables,” we associate an image of the water, the tap, and so on. When we see
the words “cutting up vegetables,” we picture an image with the knife and vegetables in our mind.
The main contributions of this article can be summarized as follows:

• Multimodal Knowledge Graph (MKG) is proposed to explicitly represent implicit multi-
modal knowledge relations between the image and text, including both image and text enti-
ties connected by their intra-modal semantic relations and inter-modal co-occurrence rela-
tions. Intra-modal semantic relations provide synonymy information that is implicit in the
unimodal data such as the text corpus. And inter-modal co-occurrence relations characterize
the co-occurrence correlations that are implicit in image-text pairs. These two relations can
help to connect the image and text in the higher-level semantic space.
• Multimodal Graph Convolution Networks (MGCN) is proposed to sufficiently utilize the

implicit multimodal knowledge by reasoning on the MKG in two steps. MGCN can focus
on different aspects in each step. Specifically, in the first step, MGCN separately reasons
on the image entities and text entities to focus on intra-modal semantic relations. It aims
to distinguish other entities in the semantic space. In the second step, MGCN reasons on
the whole multimodal graph to focus on the inter-modal co-occurrence relations. It aims
to connect multimodal entities based on statistic correlations. Finally, the implicit semantic
relations between two modal entities can be mined to enhance the embeddings of the image
and text for a better retrieval performance.

Extensive experiments on two widely used datasets, namely, Flickr30k [56] and MSCOCO [28],
are conducted. The experimental results demonstrate the effectiveness and superiority of our pro-
posed MKVSE approach.

The rest of this article is organized as follows: Section 2 summarizes a brief review of related
works. Section 3 introduces the proposed MKVSE approach and explains its architecture in detail.
Section 4 presents the experiments and analyses, including comparison with state-of-the-art image-
text retrieval methods, ablation study, and visualization results. Section 5 concludes this article and
presents the future work.

2 RELATED WORK

2.1 Image-text Retrieval

Measuring the image-text semantic similarity is essential for image-text retrieval. Based on how
the similarity is measured, existing image-text retrieval methods can be roughly categorized into
two groups: cross-interaction matching methods [8, 20, 23, 27, 33, 50] and independent representa-
tion matching methods [7, 14, 15, 24, 43, 46]. As for cross-interaction matching methods, Karpathy
et al. [20] first adopted R-CNN [17] to detect salient objects and inferred latent alignments between
word-level textual features in sentences and region-level visual features in images. Moreover, a
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cross-attention mechanism [8, 23, 27, 33, 50] was applied to capture the fine-grained interaction
between images and texts for the image-text retrieval. Although achieving high performance,
cross-attention suffers from calculation explosion during inference for requiring to forward over
all pairs of images and texts, which cannot be ignored in retrieval tasks [7]. Compared with
cross-interaction matching methods, independent representation matching methods are much
more efficient during inference. Frome et al. [15] proposed a pioneer embedding-based method
that projected image features and skip-gram word features by a linear mapping and calculated
similarity accordingly. Faghri et al. [14] proposed VSE++ to further improve the quality of
Visual-Semantic Embeddings (VSE) by learning with online hard-negative mining. Beyond
the above, more researches along this line focus on improving the visual or text representation
or designing auxiliary training objectives [7, 24, 43]. Li et al. [24] proposed Visual Semantic

Reasoning Network (VSRN) to address the lack of global semantic concepts in the current
representation of the image, which is in the image’s corresponding text caption. VSRN generates
enhanced visual representations by capturing key objects and semantic concepts of a scene. To
handle polysemous entities with multiple possible meanings, Song et al. [43] proposed Polyse-

mous Visual-Semantic Embedding (PVSE) to compute multiple and diverse representations
of an entity by combining global context with locally guided features. The two polysemous
instance embedding networks are tied up and optimized jointly in the multiple instance learning
framework. Chen et al. [7] proposed Generalized Pooling Operator (GPO) to automatically
seek the best pooling function for different data modality and feature extractor, requiring no
manual tuning while staying effective and efficient. However, all the above methods only rely on
the image-text pairs, neglecting the prior knowledge between the the image and text. Shi et al. [41]
built a Scene Concept Graph (SCG) by considering co-occurrence pairs of semantic concepts in
the scene graph of images. Co-occurred concepts in the same scene can provide common-sense
knowledge to discover other semantic-related concepts. Then the SCG can be used to expand
more semantic concepts for enhancing image representation semantically. Wang et al. [46]
proposed a Consensus-aware Visual-Semantic Embedding (CVSE) model to incorporate the
consensus information into image-text matching. And the consensus information is exploited
by computing the statistical co-occurrence correlations between the semantic concepts from the
image captioning corpus. However, these methods only utilize the unimodal knowledge (such as
knowledge from the scene graphs of images and the image captions of text corpus) and neglect
the implicit multimodal knowledge relations between the image and text when the image contains
information that is not directly described in the text, which hinders the ability of connecting
image and text. Hence, exploring the effectiveness of implicit multimodal knowledge relations for
image-text retrieval is necessary. Our proposed approach introduces the multimodal knowledge
graph to explicitly represent implicit multimodal knowledge relations between the image and
text, which can help to connect two modalities in the higher-level semantic space.

2.2 Multimodal Graph-based Deep Learning

Multimodal graph-based deep learning can take advantage of the multimodal content for various
multimodal understanding tasks, such as fake news detection [42], video emotion recognition [12],
multimodal neural machine translation [19], recommendation systems [59], and image-text re-
trieval [16]. Wang et al. [49] proposed an end-to-end knowledge-driven multimodal graph con-
volution network to model the semantic-level representations for fake news detection by jointly
modeling the textual information, knowledge concepts, and visual information into a unified deep
model. Mai et al. [31] proposed a hierarchical graph fusion network that can explicitly model
unimodal, bimodal, and trimodal dynamics for video emotion recognition. Yin et al. [55] pro-
posed a graph-based multi-modal fusion encoder to exploit fine-grained semantic correspondences
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between semantic units of different modalities for multi-modal neural machine translation. Sun
et al. [44] incorporated multi-modal knowledge graph and employs information propagation on
it to obtain better entity embeddings for recommendation. Moreover, some works [9, 16, 48] also
introduced the multimodal graph to the image-text retrieval. Garcia et al. [16] proposed to en-
hance visual representations from neural networks with contextual artistic information. To this
end, an art-specific knowledge graph is built to capture contextual relations between artistic at-
tributes, which is used to inform the visual model. However, the multimodal knowledge graph for
all candidate images needs building before retrieval, which may hinder its application when the
candidate images lack contextual relations (such as their authors and dates). Wang et al. [48] pro-
posed to represent image and text with two kinds of scene graphs: visual and textual scene graph,
each of which is exploited to jointly characterize objects and relations in the two modalities. The
image-text retrieval task is then naturally formulated as cross-modal scene graph matching. Cheng
et al. [9] proposed a graph-based Cross-modal Graph Matching Network (CGMN) to explore
both intra-relations and inter-relations without introducing network interaction. CGMN can take
the advantages of cross-modal inter-relation reasoning while being as efficient as the independent
methods. However, the multimodal graphs in the above methods are all built while training upon
the image-text pairs, on which the implicit multimodal knowledge relations are not represented
explicitly. Thus, they cannot sufficiently utilize the implicit multimodal relations in the multimodal
knowledge graph, which is crucial for image-text retrieval. Our proposed approach introduces the
multimodal knowledge graph to explicitly represent implicit multimodal knowledge relations be-
tween the image and text, and then the proposed multimodal graph convolution networks can
sufficiently utilize the implicit multimodal knowledge relations in a two-step manner. In each step,
it can focus on different aspects to further improve the quality of visual-semantic embedding.

2.3 Multimodal Knowledge Enhanced Deep Learning

Although deep learning has achieved great success in many fields, it is usually data-hungry, lacks
interpretability, and fails to perform well on unseen situations. Various kinds of prior knowledge
often exist in the target domain, which can alleviate the deficiencies of deep learning. The ex-
isting multimodal knowledge enhanced deep learning methods [11, 53, 58] aim to incorporate
multimodal knowledge into the networks, which has been utilized in various multimodal under-
standing tasks, such as visual question answering [11], video caption [58], multimodal named
entity recognition [5], dialogue systems [54], and image-text retrieval [34, 53]. Ding et al. [11]
proposed to represent multimodal knowledge by the form of triplets to correlate visual objects
and fact answers, which constructs vision-relevant multimodal knowledge for the VQA scenario.
Zhang et al. [58] proposed knowledge-enhanced spatial-temporal inference on product-oriented
spatial-temporal graphs to capture the dynamic change of fine-grained product-part characteris-
tics. Chen et al. [5] proposed to introduce external multi-modal knowledge helping improve named
entity extraction, where the matched entity information is incorporated into the model for feature
fusion. Yang et al. [54] proposed to integrate external multimodal knowledge-base reasoning with
pre-trained language models on task-oriented dialogue systems, which enhances the model via a
multi-granularity fusion mechanism to capture multi-grained semantics in the dialogue history.
Yang et al. [53] proposed to perform triple contrastive learning in pre-training, which takes the
advantage of localized and structural information from image and text input to benefits in rep-
resentation learning. Nian et al. [34] proposed a multi-modal knowledge representation learning
framework that attempts to handle knowledge from both textual and visual modal web data. How-
ever, these methods neglect the multimodal implicit relations when the image contains objects
that are not directly described in the text, which hinders the ability to connect the image and the
text. Our proposed approach can explicitly represent the implicit multimodal knowledge relations
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between the image and the text, and then it can be integrated to the network for more robust
image-text connections.

3 MULTIMODAL KNOWLEDGE ENHANCED VISUAL-SEMANTIC EMBEDDING

As shown in Figure 2, our proposed Multimodal Knowledge Enhanced Visual-Semantic Em-

bedding approach (MKVSE) comprises five components: Global Embedding (Section 3.1), Mul-
timodal Knowledge Graph (Section 3.2), Multimodal Graph Convolution Networks (Section 3.3),
Embedding Enhancement (Section 3.4), and Objective Function (Section 3.5). In Global Embedding,
each input image is represented as region-level features V = [v1; . . . ; vR], where vi is the feature
vector for the ith region [1]. Each input text is represented as word features T = [t1; . . . ; tL],
where tj is the feature vector of the jth word [45]. The pooling function GPO [7] is adopted
to calculate the image global embedding v̄ from the image feature V and the text global em-
bedding t̄ from the text feature T. In Multimodal Knowledge Graph (MKG), the entities
{T ′1 ,T ′2 , . . . ,T ′nt ,O

′
1,O

′
2, . . . ,O

′
ni } of MKG are selected as the image objects appearing ni th most

frequently and the text words appearing nt th most frequently in the Visual Genome dataset [22].
The relations of MKG are calculated as the co-occurrence relations A between two modalities and
the semantic relations Ai , At within the modalities. The text entities are represented by GloVe
embedding [35], and the image entities are represented as the mean pooling of the same cate-
gory features [1]. In Multimodal Graph Convolution Networks (MGCN), MKG is reasoned
by MGCN in a two-step manner, which can focus on different aspects in each step, to get the

embeddings M̃(lm ) of entities {T ′1 ,T ′2 , . . . ,T ′nt ,O
′
1,O

′
2, . . . ,O

′
ni } in MKG, where lm is the number of

MGCN’s layers. In Embedding Enhancement, the entities’ embeddings M̃(lm ) are used to enhance
the input image’s global embedding v̄ and the input text’s global embedding t̄ with multihead atten-
tion mechanism [45] to generate the enhanced embeddings ve and te . In Objective Function, the
enhanced embeddings ve and te are aligned by optimizing the hinge-based bidirectional triplet
loss. Finally, the candidate images (texts) of the top similarities with the text (image) query are
selected as the final retrieval result.

3.1 Global Embedding

3.1.1 Global Embedding of Image. For an input image I , we follow References [7, 36, 37] to de-
tect salient regions with the Bottom-Up and Top-Down attention model (BUTD) [1], which
selects the top R (R = 36) Regions Of Interest (ROIs) with the highest class confidence scores.
Then R region-level image features V = [v1; . . . ; vR] ∈ RR×Di , where Di (Di = 2,048) is the dimen-
sion of the extracted region features. Afterwards, V is projected into a D-dimensional space via a
Fully Connected (FC) linear projection. The obtained visual region representation is denoted as
Ṽ = [ṽ1; . . . ; ṽR] ∈ RR×D . Moreover, we acquire the global embedding v̄ ∈ RD of the input image I
by adopting a pooling function on Ṽ. Generalized Pooling Operator (GPO) [7] has achieved the
impressive improvement in image-text retrieval compared with traditional pooling strategy such
as mean-pooling and max-pooling, which is adopted as our pooling strategy.

3.1.2 Global Embedding of Text. For each input textT , we follow References [7, 36, 37] to utilize
pre-trained Bert [45] as the text encoder to extract word representation T = [t1; . . . ; tL] ∈ RL×Dt ,
where tj ∈ RDt denotes the representation of T ’s jth word, L denotes the number of words, and
Dt denotes the dimension of word embedding. Then T is projected into a D-dimensional space via

an FC linear projection. The obtained textual word representation is denoted as T̃ = [t̃1; . . . ; t̃L] ∈
R

L×D . The global embedding t̄ ∈ RD of the input text T is acquired by adopting the same pooling
function GPO [7] in Section 3.1.1.
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Fig. 2. Overview of the proposed MKVSE framework.

3.2 Multimodal Knowledge Graph

To explicitly represent the implicit relations between the image and text, we build the Multimodal

Knowledge Graph (MKG).

3.2.1 Entities. The images {I1, . . . , IN } appearing in both Visual Genome [22] and train split
dataset of MSCOCO or Flickr are selected, which can avoid the data leakage of the validation
set. Then N (N = 47210) triple tuples (Ii ,Oi ,Ti ) are gotten, where Ii is the raw image, Oi is the
image object list appearing in the Ii , and Ti is the text caption annotated by human. We follow
References [18, 46] to ignore the meaningless textual words such as “is” and “a,” and the nt most
frequently appearing text words {T ′1 ,T ′2 , . . . ,T ′nt } are selected from total 14,777 textual words in

{T1, . . . ,TN } and ni most frequently appearing image objects {O ′1,O ′2, . . . ,O ′ni } from total 56,355
image objects in {O1, . . . ,ON }.

3.2.2 Relations. The co-occurrence times between {T ′1 ,T ′2 , . . . ,T ′nt ,O
′
1,O

′
2, . . . ,O

′
ni } are counted

according to the N triple tuples (Ii ,Oi ,Ti ). The co-occurrence matrix denotes A ∈ R(nt+ni )×(nt+ni ) .
WordNet’s path similarity sp (·, ·) [4, 32] is used to represent the intra-modal semantic relations.

The path similarity matrix of text words denotes At ∈ Rnt×nt

and the path similarity matrix of

image objects denotes Ai ∈ Rni×ni

. The two path similarity matrices are as follows:

⎧⎪⎨
⎪
⎩

At
i, j = sp (T ′i ,T

′
j )

Ai
i, j = sp (O ′i ,O

′
j ),

(1)

where sp (·, ·) is calculated by “path similarity” in the Natural Language ToolKit (NLTK) [4].
The path similarity sp (·, ·) = 1/(1 + d (·, ·)), where d (·, ·) represents the shortest path distance of
two words in the is-a (hypernym/hyponym) taxonomy.
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It returns a score denoting how similar two words are. The score is in the range 0 to 1, where
1 represents the maximum similarity and 0 represents the minimal similarity. The path similarity
can help to distinguish other entities in the semantic space.

3.2.3 Representation of Entities. We follow CVSE [46] to embed each text entityT ′i into a vector

gi ∈ R300 by GloVe [35] rather than Bert [45]. It has two benefits: (1) The proposed approach
MKVSE can be fairly compared with CVSE,† which is a re-implementation of CVSE [46] using
Bert as the input text’s encoder and GloVe as the text entities’ encoder with slightly better results
(see more details in Section 4.4). (2) For the text encoder, Bert is usually better than GloVe in
performance [2]. The text entities in MKG are represented by GloVe embedding and improve the
final performance of image-text retrieval, which further shows the effectiveness of our proposed
approach.

For each image object (entity) O ′i , raw images having shown the image object O ′i denotes
{Ii1 , . . . , Iiki

}, where ki is the total number of the above raw images. Each image object O ′i ’s

embedding bi ∈ RDi is represented as the average of all Ii j
’s R region-level image features

[vj,1; . . . ; vj,R] ∈ RR×Di extracted from the Bottom-Up and Top-Down (BUTD) [1] attention
model, as follows:

bi =
1

ki

ki∑
j=1

1

R

R∑
r=1

vj,r . (2)

The mean pooling of image features belonging to the same category are calculated, which can
represent the average semantics of each object category.

Finally, the representations for text and image entities are acquired as:

⎧⎪⎨
⎪
⎩

G = [g1; . . . ; gni ]

B = [b1; . . . ; bnt ],
(3)

where ni is the number of selected image objects most frequently appearing and nt is the number
of selected text words most frequently appearing.

Compared with the method that only utilizes the word co-occurrences [41, 46], MKG has signif-
icant advantages. Obtaining the similarities of entities only based on word co-occurrences is easy
to make mistakes. They are prone to conclude that “man” and “dog” are similar, because these two
words usually occur in the same image or the same sentences. However, MKG can address this
problem to some extent. In fact, MKG can distinguish “man” and “dog” in the noun hierarchies of
WordNet [32]. Moreover, the inter-modal co-occurrence relations characterize the co-occurrence
correlations such as temporal, causal, and logical relation, which are implicit in the unimodal data
(such as text corpus). For instance, the text entity “washing” and the image entity “tap,” the text
entity “cutting” and the image entity “knife” co-occur frequently in image-text pairs. Although the
text entity does not directly describe the image entity, they are semantically related, which can be
utilized to connect the two modalities.

3.3 Multimodal Graph Convolution Networks

Different modal entities would have different characteristics, and so as to different types of rela-
tions. To sufficiently utilize the implicit multimodal knowledge in MKG, including the two modal
entities, intra-modal and inter-modal relations, Multimodal Graph Convolution Networks

(MGCN) is proposed. MGCN reasons on MKG in two steps. In each step, MGCN can focus on
different aspects of the implicit multimodal knowledge.
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3.3.1 Intra-modal Relation Reasoning. In the first step, MGCN separately reason on the image
entities and text entities connected by intra-modal semantic relations using Graph Convolution

Networks (GCN) [21]. It can generate semantic features for each entity to distinguish other en-
tities in the semantic space. Concretely, the relation matrices A, At , Ai are first normalized in
Equation (1) as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

Âi, j =
Ai, j∑
j Ai, j

Âi
i, j =

Ai
i, j∑

j Ai
i, j

Ât
i, j =

At
i, j∑

j At
i, j

. (4)

MKG’s entity embeddings G and B are projected into a D-dimensional space via a fully con-

nected (FC) linear projection to get G(0) ∈ Rnt×D and B(0) ∈ Rni×D . The GCN [21] is utilized to
separately reason on text entities and image entities with intra-modal links as the first reasoning
step:

G̃(l ) =
⎧⎪⎨
⎪
⎩

G(0) , l = 0

σ
(
Ât G(l−1)W

(l−1)
t + C

(l−1)
t

)
, 0 < l ≤ lm ,

(5)

B̃(l ) =
⎧⎪⎨
⎪
⎩

B(0) , l = 0

σ
(
Âi B(l−1)W

(l−1)
i + C

(l−1)
i

)
, 0 < l ≤ lm

, (6)

where lm is the total number of layers in MGCN, Ât and Âi are the adjacency matrices for MGCN

during training, which is pre-calculated from MKG in Equation (4) and then fixed, W
(l−1)
t ∈ RD×D

and W
(l−1)
i ∈ RD×D are learnable matrices, C

(l−1)
t ∈ Rnt×D and C

(l−1)
i ∈ Rni×D are learnable bias

matrices, and σ (·) is the LeakyReLU activation function.

3.3.2 Inter-modal Relation Reasoning. In the second step, the whole multimodal knowledge
graph connected by inter-modal co-occurrence relations is reasoned on to generate represen-
tation for all entities in MKG. It can connect two modalities based on co-occurrence correla-
tions Â in Equation (4). Then the inter-modal reasoning is implemented on the whole graph as
follows:

M(l ) = σ
(
Â

(
G̃(l ) ‖B̃(l )

)
W(l ) + C(l )

)
, (7)

M̃(l ) = �2
(
M(l ) +

(
G̃(l ) ‖B̃(l )

))
, (8)

where �2 represents the �2-norm function, ·‖· represents the concatenating of two feature matrices

alone the feature dimension. And M̃(l ) will be divided into two modal entities as follows:

[G(l ) ; B(l )] = M̃(l ), (9)

where G(l ) ∈ Rnt×D are the text entities’ representation in the lth layer and B(l ) ∈ Rnt×D are the
image entities’ representation in the lth layer. They will be used as input to the Equations (5) and
(6). Finally, our proposed MGCN(·) can be formalized as:

MGCN(G,B, Â, Âi , Ât ) = M̃(lm ), (10)

where lm is the total number of layers in MGCN.
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3.4 Embedding Enhancement

The input image’s global embedding and the input text’s global embedding are enhanced with
representation of entities in MKG to generate the multimodal knowledge enhanced embeddings for
similarity calculation. Specifically, the multihead attention mechanism [45] is adopted to encode
the input image’s global embedding v̄ and the input text’s global embedding t̄ using MKG’s entity

embeddings M̃(lm ) as follows:

MultiHead(X,Y) = Concat(h1, . . . , hH ) + X, (11)

where X = v̄ or t̄, Y = M̃(lm ) , Concat(·) represents the concatenation operation alone the feature
dimension, H denotes the number of heads, and the scaled-dot product attention Att(·) is used to
calculate hi as follows:

hi = Att(XW
Q
i ,YWK

i ,YWV
i ), (12)

Att(Q,K,V) = Softmax

(
QK�
√
dk

)
V, (13)

where softmax function is operated on each row and dk the channel number of Q and K, and W
Q
i ,

WK
i , and WV

i are learnable matrices. Then, a fully connected feed-forward network is executed to
combine attention results from different heads.

The global embeddings of two modalities are enhanced with the multi-head attention, which will
be aligned in the semantic space formed by key values (entity embeddings generated by MGCN).
The embedding enhancement can help injecting the multimodal knowledge relations into the final
output embeddings. Because MKG can represent implicit relations between text and image modal-
ities that are not contained in the global embedding, this enhancement can help the model to learn
the implicit connection between text and image for a better image-text retrieval performance.

Based on the above processes, the multimodal knowledge enhanced embeddings can be used as
follows:

⎧⎪⎨
⎪
⎩

va = FFN(MultiHead(v̄, M̃(lm ) )),

ta = FFN(MultiHead(t̄, M̃(lm ) )),
(14)

where FFN(·) denotes the feed forward network implemented by a two-layer multi-layer percep-
tron with the ReLU activation function in between. The final output embeddings can be formulated
as follows:

⎧⎪⎨
⎪
⎩

ve = [
√

1 − λc v̄,
√
λc va],

te = [
√

1 − λc t̄,
√
λc ta],

(15)

where λc is the hyper-parameter of concatenating weight for the multimodal knowledge enhanced

embeddings. The reason of using
√
λc and

√
1 − λc as the concatenating weight will be explained

in Section 3.5. The benefit of concatenating two parts of embeddings is efficient during inference
for using embedding-based retrieval.

3.5 Objective Function

To achieve alignment of a given positive image-text pair (I ,T ), the hinge-based bidirectional triplet
loss [14] is utilized for optimization, which is defined as:

L = [α − s (I ,T ) + s (I , T̂ )]+ + [α − s (I ,T ) + s (Î ,T )]+, (16)

whereα represents the margin factor, [x]+ = max(x , 0), and s (I ,T ) denotes the cosine similarity be-

tween the output embeddings of I andT (ve and te ). T̂ = argmaxj�T s (I , j ) and Î = argmaxi�I s (i,T )
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are the hardest negatives in a mini-batch. s (I ,T ) can formulated as follows:

s (I ,T ) := cos(ve , te )

= cos([
√

1 − λc v̄,
√
λc va], [

√
1 − λc t̄,

√
λc ta])

= cos(
√

1 − λc v̄,
√

1 − λc t̄) + cos(
√
λc va ,

√
λc ta )

= (1 − λc ) cos(v̄, t̄) + λc cos(va , ta ),

(17)

where ‖v̄‖2 = ��t̄��2 = ‖va ‖2 = ‖ta ‖2 = 1. ‖·‖2 represents the �2-norm. cos(·) represents the
cosine similarity. The cosine similarity s (I ,T ) has two parts: (1 − λc ) cos(v̄, t̄) = (1 − λc )s (v̄, t̄)
and λc cos(va , ta ) = λcs (va , ta ), where s (v̄, t̄) represents the cosine similarity of the input image’s
and the input text’s global embedding, s (va , ta ) represents the cosine similarity of the image’s and
text’s multimodal knowledge enhanced embedding. λc is the weight of s (va , ta ). The top similarity
will be selected as the final retrieval result and the triplet loss is used for alignment learning.

4 EXPERIMENTS

To demonstrate the effectiveness of the proposed MKVSE approach, we perform experiments in
terms of image-to-text retrieval (image query) and text-to-image retrieval (text query) on two
widely used datasets and compare with recent state-of-the-art methods. Ablation studies are con-
ducted to investigate the effectiveness of each component of our approach. We also introduce
detailed implementations and training strategy of the proposed MKVSE approach.

4.1 Datasets

Experiments on the two widely used datasets Flickr30k [56] and MSCOCO [28] are conducted to
evaluate our approach and recent state-of-the-art methods. The details of the two datasets are as
follows:

Flickr30k. It contains 31,783 images from Flickr website, and each image is described by five
different sentences. Following the settings in References [7, 37, 46], this dataset is split into 29,783
training images, 1,000 validation images, and 1,000 testing images.

MSCOCO. It includes 123,287 images, where each image is associated with five annotated sen-
tences. Similarly, we followed the split of References [7, 37, 46], namely, 113,287 images for training,
5,000 images for validation, and 5,000 images for testing. Likewise, two evaluation settings are con-
sidered in this article: (1) MSCOCO 1k, the final result is calculated by averaging the results over
5-folds of 1k test images; and (2) MSCOCO 5k, the evaluation result is calculated on the full 5k
testing images.

4.2 Experimental Settings

4.2.1 Evaluation Protocols. Following the existing methods [7, 37], we adopt Recall at K, R@K
(K = 1, 5, and 10) for short, as the evaluation metrics, which are commonly utilized in the muilti-
modal retrieval task. R@K is defined as the percentage of ground truth being retrieved at top-K
results. The higher R@K indicates the better performance. We also adopt RSUM (sum of R@K) as
the evaluation metrics, which calculates the total value of R@K for both text and image retrieval.
RSUM provides general perspective for the overall retrieval performance. Same as R@K, the higher
RSUM indicates the better performance.

4.2.2 Implementation Details. Our implementation settings follow our baseline model
GPO’s [7]. For each image, the Faster-RCNN [38] detector provided by Bottom-Up and Top-

Down (BUTD) attention model [1] are taken to extract the R (R = 36) region proposals and obtain
a 2,048-dimensional feature for each region. And the BUTD model is pre-trained on ImageNet [39]

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 5, Article 162. Publication date: March 2023.



162:12 D. Feng et al.

Table 1. Image-text Retrieval Performance on Flickr30k Test Set

Methods Backbone
Flickr30k Dataset

Image-to-text Text-to-image
RSUM

R@1 R@5 R@10 R@1 R@5 R@10

SCAN* (ECCV 2018) [23] BUTD, GRU 67.4 90.3 95.8 48.6 77.7 85.2 465.0
BFAN* (MM 2019) [29] BUTD, GRU 68.1 91.4 - 50.8 78.4 - -
VSRN* (ICCV 2019) [24] BUTD, GRU 71.3 90.6 96.0 54.7 81.8 88.2 482.6
CVSE (ECCV 2020) [46] BUTD, GRU 73.5 92.1 95.8 52.9 80.4 87.8 482.5
IMRAM (CVPR 2020) [6] BUTD, GRU 74.1 93.0 96.6 53.9 79.4 87.2 484.2
WCGL (ICCV 2021) [51] BUTD, GRU 74.8 93.3 96.8 54.8 80.6 87.5 487.8
ADAPT* (AAAI 2020) [52] BUTD, GRU 76.6 95.4 97.6 60.7 86.6 92.0 508.9
SGRAF (AAAI 2021) [10] BUTD, GRU 77.8 94.1 94.1 97.4 58.5 83.0 504.9
CAMERA* (MM 2020) [36] BUTD, Bert 78.0 95.1 97.9 60.3 85.9 91.7 508.9
GraDual* (WACV 2022) [30] MNET, GRU 78.3 96.0 98.0 60.4 86.7 92.0 511.4
VSRN++ (TPAMI 2022) [24] BUTD, Bert 79.2 94.6 97.5 60.6 85.6 91.4 508.9
DIME* (SIGIR 2021) [37] BUTD, Bert 81.0 95.9 98.4 63.6 88.1 93.0 520.0
GPO (CVPR 2021) [7] BUTD, Bert 81.7 95.4 97.6 61.4 85.9 91.5 513.5

MKG (ours) BUTD, Bert 80.1 95.8 98.6 63.2 87.4 92.3 517.4
MGCN (ours) BUTD, Bert 82.9 96.5 98.9 63.2 87.1 92.5 521.1
MKVSE* (ours) BUTD, Bert 84.0 96.9 99.1 64.4 88.2 93.1 525.7

and Visual Genome [22] datasets. For each input text, The basic version of the pre-trained Bert [45]
is leveraged to obtain the original word embeddings with dimension 768. The number of text en-
tities and image entities are such that nt = ni = 300. Then they are projected to a D-dimensional
space (D = 1,024). The activation function σ (·) in this article represents LeakyReLU function and
its negative slope is 0.1. H in Equation (11) is 1. The concatenating weight λc in Equation (15) is
0.05. The total number of layers lm in MGCN is 1. The model is trained with the batch size of
128. The margin α of the triplet ranking loss in Equation (16) is 0.2. The initial learning rate is
5e-4, while different approach components have different learning rate multiplier: (1) Bert: 0.1;
(2) MGCN: 0.5. The approach is trained for 25 epochs and learning rate decays by a factor of 10 for
last 10 epochs. All experiments are implemented with PyTorch v1.2.0 and run on GTX 1080 Ti.

4.3 Comparison with State-of-the-art Methods

To demonstrate the effectiveness of our proposed MKVSE approach, we compare it with the recent
state-of-the-art methods in image-text retrieval task on two widely used datasets. The comparison
results are summarized in Tables 1–3. The best performance is highlighted in bold, and the best
performance of previous methods is emphasized with underlines. The state-of-the-art methods
include SCAN [23], BFAN [29], VSRN [24], CVSE [46], IMRAM [6], WCGL [51], ADAPT [52],
SGRAF [10], CAMERA [36], GraDual [30], VSRN++ [25], DIME [37], and GPO [7]. “MKG” in the
tables represents only using MKG in our approach with Consensus-aware Graph Convolu-

tional Network (CGCN) [46]. “MGCN” in the tables utilizes not only MKG but also MGCN to
reason on MKG for getting the representations of MKG. Since some of state-of-the-art methods
are ensemble models (marked with the symbol “*” in the table), we follow References [23, 37] to
provide the ensemble model MKVSE* for fair comparison, which use averaging similarity scores
of MKG and MGCN models for final evaluation. Quantitative results on Flickr30k are shown in
Table 1. And the same retrieval task results on MS-COCO 1k test set and 5k test set are shown in
Tables 2 and 3, respectively. The column of “Backbone” represents the backbone of the correspond-
ing method:
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Table 2. Image-text Retrieval Performance on MSCOCO 1k Test Set

Methods Backbone
MSCOCO (1k) Dataset

Image-to-text Text-to-image
RSUM

R@1 R@5 R@10 R@1 R@5 R@10

SCAN* (ECCV 2018) [23] BUTD, GRU 72.7 94.8 98.4 58.8 88.4 94.8 507.9
CVSE (ECCV 2020) [46] BUTD, GRU 74.8 95.1 98.3 59.9 89.4 95.2 512.7
BFAN* (MM 2019) [29] BUTD, GRU 74.9 95.2 - 59.4 88.4 - -
WCGL (ICCV 2021) [51] BUTD, GRU 75.4 95.5 98.6 60.8 89.3 95.3 514.9
VSRN* (ICCV 2019) [24] BUTD, GRU 76.2 94.8 98.2 62.8 89.7 95.1 516.8
ADAPT* (AAAI 2020) [52] BUTD, GRU 76.5 95.6 98.9 62.2 90.5 96.0 519.7
IMRAM (CVPR 2020) [6] BUTD, GRU 76.7 95.6 98.5 61.7 89.1 95.0 516.6
GraDual* (WACV 2022) [30] MNET, GRU 77.0 96.4 98.6 65.3 91.9 96.4 525.6
CAMERA* (MM 2020) [36] BUTD, Bert 77.5 96.3 98.8 63.4 90.9 95.8 522.7
VSRN++ (TPAMI 2022) [24] BUTD, Bert 77.9 96.0 98.5 64.1 91.0 96.1 523.6
DIME* (SIGIR 2021) [37] BUTD, Bert 78.8 96.3 98.7 64.8 91.5 96.5 526.6
SGRAF (AAAI 2021) [10] BUTD, GRU 79.6 96.2 98.5 63.2 90.7 96.1 524.3
GPO (CVPR 2021) [7] BUTD, Bert 79.7 96.4 98.9 64.8 91.4 96.3 527.5

MKG (ours) BUTD, Bert 79.8 96.7 98.8 65.6 91.5 96.2 528.6
MGCN (ours) BUTD, Bert 79.8 96.5 98.9 65.0 91.6 96.4 528.2
MKVSE* (ours) BUTD, Bert 81.0 96.5 99.0 66.4 92.1 96.6 531.6

Table 3. Image-text Retrieval Performance on MSCOCO 5k Test Set

Methods Backbone
MSCOCO (5k) Dataset

Image-to-text Text-to-image
RSUM

R@1 R@5 R@10 R@1 R@5 R@10

SCAN* (ECCV 2018) [23] BUTD, GRU 50.4 82.2 90.0 38.6 69.3 80.4 410.9
VSRN* (ICCV 2019) [24] BUTD, GRU 53.0 81.1 89.4 40.5 70.6 81.1 415.7
IMRAM (CVPR 2020) [6] BUTD, GRU 53.7 83.2 91.0 39.6 69.1 79.8 416.4
VSRN++ (TPAMI 2022) [24] BUTD, Bert 54.7 82.9 90.9 42.0 72.2 82.7 425.4
CAMERA* (MM 2020) [36] BUTD, Bert 55.1 82.9 91.2 40.5 71.7 82.5 423.9
SGRAF (AAAI 2021) [10] BUTD, GRU 57.8 - 91.6 41.9 - 81.3 -
GPO (CVPR 2021) [7] BUTD, Bert 58.3 85.3 92.3 42.4 72.7 83.2 434.2
DIME* (SIGIR 2021) [37] BUTD, Bert 59.3 85.4 91.9 43.1 73.0 83.1 435.8

MKG (ours) BUTD, Bert 59.1 85.6 92.7 43.3 73.2 83.4 437.3
MGCN (ours) BUTD, Bert 59.3 84.9 92.6 42.8 73.2 83.4 436.2
MKVSE* (ours) BUTD, Bert 60.8 86.6 93.1 44.3 74.1 84.3 443.2

• “BUTD” represents the Bottom-Up and Top-Down attention model [1] for image encoding.
This model builds on Faster-RCNN [38] and pre-trains on Visual Genome [22].
• “MNET” represents the Motif-Net [57] for image encoding. Motif-Net builds on Faster-

RCNN [38] for predicting bounding regions, fine-tuned and adapted for Visual Genome [22].
• “GRU” represents the Gate Recurrent Unit [3, 40] for text encoding.
• “Bert” represents the Bert model [45] for text encoding.

It is worth noting that, in Tables 1–3, all state-of-the-art methods use the BUTD or Motif-Net
as the image encoder, which are both pre-trained on Visual Genome dataset. And our approach
also utilizes this dataset. In this article, we follow the settings in References [7, 36, 37] to use the
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same backbone, Bottom-Up and Top-Down (BUTD) attention model [1] and Bert [45] extracting
features from images and texts.

Comparison of single models. Our proposed single model MGCN outperforms other state-
of-the-art single methods on both two datasets in R@1, which is the hardest metric. Moreover,
compared with the best performance of previous single models, our MGCN obtains relative RSUM
gains with 7.6% on Flickr30k dataset in Table 1. Our MGCN also obtains relative RSUM gains with
0.7% and 2.0% on MSCOCO (1k) settings and MSCOCO (5k) settings in Tables 2 and 3.

Comparison of ensemble models. As shown in Tables 1–3, our ensemble model MKVSE*
outperforms other ensemble methods in all metrics, i.e., R@K (K = 1, 5, 10) and RSUM. Specifically,
compared with the best performance of previous methods in image-to-text retrieval and text-to-
image retrieval tasks, MKVSE* gains 2.3% and 0.8% R@1 on Flickr30k, 1.3% and 1.6% R@1 on
MSCOCO(1k), 1.5% and 1.2% R@1 on MSCOCO(5k). And MKVSE* also obtains relative RSUM
gains with 5.7%, 3.1%, 7.4% on Flickr30k, MSCOCO (1k), and MSCOCO (5k).

Analysis of the results. Tables 1–3 show that the performances of all methods on the
three settings (Flikr30k, MSCOCO (1k) and MSCOCO (5k)) are relatively consistent. In the
following analysis, we focus on the performance of Flickr30k in Table 1. We can see that the
performance of SCAN* and BFAN* is relatively low, because the simple architecture cannot
fully capture the semantic and interaction of two modalities: only utilizing attention mechanism
for connecting words and image regions. The follow-up works are mainly improved in two
aspects: better similarity representation and better feature extractors. As for better similarity
representation, DIME* utilizes a modality interaction modeling network based upon the routing
mechanism to dynamically learn different activated paths for different data. As for better feature
extractors, GraDual* utilizes visual and textual scene graph and improves the coverage of each
modality by exploiting textual context semantics for the image representation and using visual
features as a guidance for the text representation. Moreover, GPO utilizes a generalized pooling
operator to automatically seek the best pooling function for different data modalities and feature
extractors.

However, these methods only rely on the image-text pairs or utilize the additional unimodal
knowledge (e.g., textual knowledge). They neglect the implicit multimodal knowledge relations
between the image and text. When the image includes the object that is not directly described in
the text, these methods can not connect images and texts well for lacking the guides of multimodal
semantic relations. Our proposed approach introduces MKG to explicitly represent implicit mul-
timodal knowledge relations between the image and text. And these relations can be sufficiently
utilized by our proposed MGCN with a two-step reasoning. The benefits of our approach are as
follows:

• Multimodal Knowledge Graph. MKG can explicitly represent implicit multimodal knowl-
edge relations between the image and text, including intra-modal semantic relations and
inter-modal co-occurrence relations. The intra-modal semantic relations can help to distin-
guish other entities in the semantic space, and the inter-modal co-occurrence relations can
connect two modal entities based on co-occurrence correlations. The image entities and the
text entities may not be directly related in some situations, but the co-occurrence relations
can depict their implicit correlations (Tables 1–3).
• Multimodal Graph Convolution Network. MGCN can sufficiently utilize the implicit

multimodal knowledge by reasoning on the MKG in two steps, in each of which MGCN
can focus on different aspects: the intra-modal reasoning to distinguish other entities in the
semantic space and the intra-modal reasoning to connect multimodal entities based on co-
occurrence correlations. The two-step reasoning manner can help to sufficiently mine the
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Table 4. Effectiveness of Each Component in Our MKVSE Approach

Methods
Flickr30k Dataset

Image-to-text Text-to-image
RSUM

R@1 R@5 R@10 R@1 R@5 R@10

GPO 81.7 95.4 97.6 61.4 85.9 91.5 513.5

CVSE† 81.0 96.4 98.3 61.9 87.1 92.0 516.7
MKG (ours) 80.1 95.8 98.6 63.2 87.4 92.3 517.4
MGCN (ours) 82.9 96.5 98.9 63.2 87.1 92.5 521.1

implicit semantic relations between two modal entities to enhance the representation of the
image and text (Tables 1–3).

The best results over previous methods on all four metrics indicate the effectiveness and im-
portance of implicit multimodal knowledge utilizing and injecting. Thus, the implicit multimodal
knowledge can further strengthen the visual-semantic embedding.

4.4 Ablation Study

In this section, we conduct several experiments using the single model MKG and MGCN to further
analyze the effectiveness of our approach. Specifically, we explore how each component of our
approach, including the MKG and MGCN, affects the image-text retrieval results on Flickr30k
(Table 4).

4.4.1 Multimodal Knowledge Graph. In Table 4, GPO [7] is the baseline model. To demonstrate
the effectiveness of MKG’s introduce, we re-implement CVSE [46] with more powerful backbone
Bert [45] as the encoder of the input text. And CVSE† is the re-implementation model with slightly
better results than original CVSE’s (see Table 1). CVSE† uses the textual knowledge compared with
baseline GPO and achieves better results, which shows that introducing the textual knowledge
can strengthen the semantic relations between image and text. Then, we propose MKG, which
explicitly represent the implicit multimodal knowledge relations between the image and text as
intra-modal semantic relations and inter-modal co-occurrence relations. Intra-modal semantic re-
lations provide synonymy information, and inter-modal co-occurrence relations characterize the
co-occurrence correlations. Our proposed MKG uses the addition multimodal knowledge graph
and graph reasoning method CGCN, which is the same graph reasoning method as CVSE†. MKG
improves the RSUM as compared with the results of CVSE†, which shows that introducing im-
plicit multimodal knowledge relations can help to connect the image and text better. However,
MKG performs less than CVSE† in the ablation experiments on image-to-text retrieval. This is
because the previous graph reasoning method CGCN used by above two networks can not suf-
ficiently utilize the multimodal knowledge in MKG. CGCN is proposed to utilize the unimodal
knowledge.

4.4.2 Multimodal Graph Convolution Networks. MGCN is proposed to solve the problem above
by decomposing the multimodal graph convolution networks into intra-modal relation reasoning
and inter-modal relation reasoning. The benefit is that MGCN can focus on different aspects of
multimodal knowledge in each step to sufficiently utilize the in Multimodal Knowledge Graph. In
each step, MGCN can focus on different aspects of multimodal knowledge. In the first step, MGCN
can focus on the intra-modal relations to distinguish other entities in the semantic space. In the
second step, MGCN can focus on the intra-modal relations to connect multimodal entities based on
co-occurrence correlations. The two-step reasoning manner can take the distinct characteristics
between text entities and image entities into consideration, which helps to improve the quality
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Table 5. Effects of the Number of Image Entities ni on Flickr30k Dataset

ni
Flickr30k Dataset

Image-to-text Text-to-image
RSUM

R@1 R@5 R@10 R@1 R@5 R@10

0 81.7 95.4 97.6 61.4 85.9 91.5 513.5
100 80.9 96.1 98.3 62.1 87.0 92.1 516.5
200 79.2 94.7 97.4 59.8 85.3 91.1 507.5
300 82.9 96.5 98.9 63.2 87.1 92.5 521.1

400 80.3 95.0 98.3 62.6 87.2 92.3 515.7

Table 6. Effects of the Concatenating Weight λc on Flickr30k Dataset

λc

Flickr30k Dataset
Image-to-text Text-to-image

RSUM
R@1 R@5 R@10 R@1 R@5 R@10

0 81.7 95.4 97.6 61.4 85.9 91.5 513.5
0.025 78.6 93.7 97.4 59.8 85.4 90.9 505.8
0.05 82.9 96.5 98.9 63.2 87.1 92.5 521.1

0.075 81.0 96.0 98.1 63.5 87.6 92.7 518.9
0.1 27.7 58.4 73.0 19.7 48.8 64.7 292.3

Table 7. Effects of the Number of MGCN Layers lm on Flickr30k Dataset

lm
Flickr30k Dataset

Image-to-text Text-to-image
RSUM

R@1 R@5 R@10 R@1 R@5 R@10

1 82.9 96.5 98.9 63.2 87.1 92.5 521.1

2 80.7 94.7 97.6 63.0 87.0 92.4 515.4
3 81.8 94.5 97.6 62.9 86.9 92.3 516.0

of visual-semantic embedding. The comparison results on Flikr30k between MKG and MGCN are
in Table 4. We can see distinct improvements after utilizing MGCN to extract features in MKG.
As compared with MKG, MGCN gains 3.7% RSUM. As compared with CVSE†, MGCN gains 4.4%
RSUM and performs better than CVSE† on both image-to-text and image-to-text retrieval tasks,
which demonstrates the effectiveness of the two-step reasoning of MGCN.

4.5 Parameter Analysis

To explore the impact of the hyper-parameter introduced by our approach, we conduct the pa-
rameter experiments to further analyze our approach, including the number of image entities ni

(Table 5), the concatenating weight for the multimodal knowledge enhanced embedding λc

(Table 6), and the number of MGCN’s layers lm (Table 7). All ablation experimental results are
conducted on Flickr30k.

• To perform a sensitivity analysis of the parameters ni , we conduct experiments by increas-
ing it from 0 to 400. The results are shown in Table 5. It can been seen that increasing ni

does not always benefit for the performance. In fact, when ni increasing from 300 to 400,
the RSUM has a drop of 5.4 %. This can be caused by the latter 100 words appearing less
frequently, which introduce the noise to the model to hinder the ability of learning robust
concept features.
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Fig. 3. Visual comparisons of text-to-image retrieval examples between baseline GPO and our MKVSE on

MSCOCO test dataset. The ground truth of images are outlined in green boxes, and the incorrect ones are

outlined in red boxes.

• To explore the impact of the parameters λc , it was fine-tuned and see how the performance of
the models varies. In Table 6, it can be found that the model is a little sensitive to the λc . When
λc is set to be 0.1, the RSUM of our model will drop to 292.3. However, the concatenating
weight for concept embedding in proper range will enhance the retrieval performance such
as 0.05 and 0.075.
• We change the lm from 1 to 3; the performance is not better with the deeper MGCN. One

possible reason is that GCNs are hard to be deep due to the over-smoothing and gradient
vanishing problems [26].

4.6 Qualitative Results

To better understand the effectiveness of our proposed approach MKVSE, we visualize some exam-
ples of image-to-text retrieval and text-to-image retrieval on MSCOCO test split dataset. For each
text query shown in Figure 3, the top-three ranked images for our approach MKVSE and baseline
model GPO are listed. The ground truth of images are outlined in green boxes, and the incorrect
ones are outlined in red boxes. The blue words in the text query are the key text entities. In the
first example, the retrieval results of baseline model GPO do not contain fruits that is in the text
query. However, our approach MKVSE enhances the ground truth image with image entities “or-
ange” and “apple,” which benefits to connect the image to word “fruits.” The implicit multimodal
knowledge relations between image entities “orange” “apple” and text entity “fruits” help to re-
trieve the corresponding image here. In the second example, baseline method ranks wrongly in
this query, because the retrieval images do not contain “ceiling” in the text query. However, our
MKVSE enhance the ground truth image with image entity “lighting,” which usually appears with
text entity “ceiling.” This multimodal relations help to retrieve the images with the object “ceiling.”
The similar implicit multimodal relations among the text query and retrieval images in the third
and fourth examples, such as text entity “train” and image entity “railway,” can also be observed.

Figure 4 shows the retrieval texts of each image query, the top-five ranked texts are listed for our
approach MKVSE and baseline model GPO. The ground truth texts are green, and the incorrect
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Fig. 4. Visual comparisons of image-to-text retrieval examples between baseline GPO and our MKVSE on

MSCOCO test dataset. The ground truth texts are green, and the incorrect texts are red.

texts are red. It can be observed that our approach MKVSE is more robust in complex scenes
than baseline GPO, achieving promising retrieval results. Such as the first example, the baseline
GPO neglects the implicit relations between “toothbrush” in the image and “bicycle” in the text,
which do not co-occurrence often. In fact, “bicycle” often appearances outdoor (such as road) but
“toothbrush” often appearances indoor (such as on the washbasin and the store shelf). Our MKVSE
can correct this error in some content by utilizing implicit multimodal knowledge relations.

5 CONCLUSION

In this article, we have proposed the Multimodal Knowledge enhanced Visual-Semantic
Embedding (MKVSE) approach for image-text retrieval, which utilizes multimodal knowledge
graph in embedding-based image-text retrieval. Concretely, first the Multimodal Knowledge
Graph (MKG) is built to represent the implicit multimodal knowledge relations between the im-
age and text. Then Multimodal Graph Convolution Networks (MGCN) is introduced to reason
on MKG in two steps for the visual-semantic embedding. Extensive experimental results on two
benchmarks have demonstrated the effectiveness and superiority of our proposed method.

The future work lies in mainly two aspects. First, it is important to utilize more types of mul-
timodal knowledge relations between different modalities in multimodal retrieval systems for im-
proving the performance and explainability of the multimodal analysis. Second, more modalities
will be incorporated for extending the field of multimodal knowledge relations, such as audio and
video.
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